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1.  Materials and Methods 

Sample fabrication  

The dielectric metasurfaces were fabricated on a quartz substrate following the processes of 

deposition, patterning, and etching. First, a 300 nm polycrystalline silicon (Poly-Si) film was 

deposited by low-pressure chemical vapor deposition (LPCVD). The inverse nanostructures were 

patterned using an E-Beam lithography system (JEOL JBX-6300FS) within 200 nm electron beam 

resist (CSAR 6200.09), followed by baking at 150℃ for 1 minute. Finally, the desired structures 

were etched using SF6 and C4F8 in an inductively coupled plasma reactive-ion etching process 

(ICP-RIE). 

Quantum optical measurement 

In the experiment, we use a 2-mm-thick type-II BBO and a 200mW 405 nm laser (CrystaLaser 

DL-405-400) to generate the polarization-entangled photon pairs in a state of (|𝐿⟩!|𝐿⟩" −

|𝑅⟩!|𝑅⟩")/√2. The half-opening angle of the generated photon pairs is designed to be 3°. The 

photons are split into the signal arm and idler arm using a prism. The photons in the idler arm are 

detected with polarization selection using a single photon counting module (SPCM) (Excelitas-



SPCM-800-14-FC), and the detection signals are sent to herald signal photons’ arrival on the 

SPAD camera. Meanwhile, the signal photons are sent through a 10-meter-long single-mode fiber 

to the imaging setup. A lens with a focal length of 75 mm and a 10x objective are used to focus 

the signal beam onto the metasurface. The hologram generated from the metasurface is imaged by 

the SPAD camera (SPAD512S) using a 10x objective and a lens with a focal length of 125 mm. 

The heralded image of the signal photons in Figs. 3(b) to 3(f) are all retrieved using 600 frames 

with external triggers from SPCM and with background white noise subtracted. The background 

is measured using the same triggering setting with blocked signal photons. Each frame spans 100 

ms with a maximum of 255 photon counts in each pixel. Each trigger from the SPCM would turn 

on the camera for a detection window of 18 ns. With multiple triggers within one frame, the 

detection events in each triggered window would accumulate into one frame. 

 

2. Experimental results without erasure 

Here Fig. S1 shows the quantum holographic results with a rotating signal polarizer without the 

erasure effect, which show no variation in the intensity level and are evaluated as the dashed curves 

in Fig. 4(b). 

 
 

Fig. S1 Quantum hologram without the erasure effect. 

3. Calculation of intensity drop, contrast, and Pearson correlation 

To evaluate the erasure effect on the holographic results, we calculate the intensity drop, 

Pearson correlation, and contrast on the images. The intensity drop is defined as  
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result 𝑗 (a total of 4 results as shown in Figs. 3(c-f)) with erasure effect and is calculated as the 
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the letter 𝑖 of the hologram result without erasure. Then on average over the four holograms with 

erasure, the erased letters show a drop in intensity by -13.8 dB. 

 

 
Fig. S2 The target holographic image as a mask to select letter and background 

regions. 

 

For the remaining letters, we define the contrast for individual letters against the background as  
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and obtain an average contrast for the remaining letters as 7.5 dB. We further calculate the Pearson 

correlation coefficient for the remaining individual letter 𝑖 between the result 𝑗 with erasure and 

the result without erasure as 
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where for example, 𝐼#,%
())(𝑥, 𝑦)  is the intensity distribution for letter 𝑖 , including its regional 

background, in the hologram result 𝑗 with erasure. In this way, the remaining letters in all 4 results 



with erasure show an average Pearson correlation coefficient of 0.64, demonstrating a high 

correlation. The above analysis suggests that despite the selective erasure of certain letters, the 

remaining holographic content retains sufficient clarity and coherence, facilitating effective 

interpretation. 

4. High-dimension BB84 quantum key distribution implementation with holograms 

In this section, we discuss the implementation of high-dimensional BB84 quantum key 

distribution using our metasurface-enabled quantum hologram platform. The BB84 protocol, first 

proposed by Bennett and Brassard in 1984 [55], is a quantum key distribution scheme for a sender, 

Alice, to generate and share a random private key with a receiver, Bob. In the original protocol, 

Alice and Bob first agree on two mutually unbiased bases (MUBs). Alice then randomly prepares 

quantum states in one of MUBs, while Bob randomly measures in either basis. After their quantum 

transmission, they publicly announce their basis choices and keep only the results where their 

bases are matched, allowing them to establish a secure key. Here, these MUBs are orthonormal 

bases {|𝛼#⟩} and {|𝛽#⟩} such that UV𝛼#U𝛽%WU
1 = 1/𝑑 for all 𝑖, 𝑗 ranging from 1 to 𝑑 where 𝑑 is the 

dimension of the basis [53]. These bases are unbiased in the sense that a state prepared in one basis 

has an equal probability of being measured in any state of the other basis. For our high-dimensional 

implementation, we can construct MUBs using different spatial holographic states that satisfy this 

unbiased measurement probability condition. More specifically, possible choices of MUBs are  

{|𝛼#⟩} = {|𝐻, 𝜓2⟩, |𝐻, 𝜓3⟩, |𝑉, 𝜓2⟩, |𝑉, 𝜓3⟩},	

{|𝛽#⟩} =
1
√2

{|𝐿, 𝜓3⟩ + |𝑅, 𝜓2⟩, |𝐿, 𝜓3⟩ − |𝑅, 𝜓2⟩, |𝐿, 𝜓2⟩ + |𝑅, 𝜓3⟩, |𝐿, 𝜓2⟩ − |𝑅, 𝜓3⟩}, 

where 𝜓3  and 𝜓2  are the LCP and RCP holograms in Fig. S.3 (a,b) chosen for simplicity of 

illustration. Given that two holograms are orthogonal to each other, i.e., ⟨𝜓3|𝜓2⟩ = 0, these two 

bases satisfy the unbiased measurement probability condition for 𝑑 = 4, i.e. UV𝛼#U𝛽%WU
1 = 1/4  for 

all  𝑖, 𝑗 ranging from 1 to 4. Here, we define the (un-normalized) inner project of two spatial 

holographic states as ⟨𝜙|𝜓⟩ = ∑ 𝜙∗𝜓	
/,0  where both 𝜙 and 𝜓 are any linear combination of the 

complex holographic field 𝜓3 and 𝜓2.  

It is important to note that the states {|𝛽#⟩} for all 𝑖 are quantum holograms — these hybrid 

entangled states between polarization and spatial degrees of freedom offer extra flexibility in 

implementing BB84 QKD schemes which is enabled by our metasurface platform. For example, 



Alice can generate all of these quantum hologram states with a new phase profile on the 

metasurface and make suitable adjustments to the angles of polarizers, half-wave plates, and 

quarter-wave plates. While our current implementation uses spatially separated holograms (𝜓3 and 

𝜓2) to ensure orthogonality, the holographic states can be made more general due to our control 

of phase difference. As a simple example, we can construct another orthogonal states using 

superposition states such as 𝜓3 → 𝜓3 + 𝜓2 and  𝜓2 → 𝜓3 − 𝜓2. This demonstrates the flexibility 

of our platform in generating various orthogonal basis states for quantum key distribution. 

 
Fig. S3 (a, b) The orthogonal modes 𝜓3 , 𝜓2  for implementing high-dimensional 

BB84. (c, d) Phase maps generated by GS algorithm to realise the orthogonal modes 

in (a, b). (e, f) Estimated orthogonal modes 𝜓35 , 𝜓25  after accounting for fabrication 

imperfections.  

 

To numerically characterize our implementation, we use Gerchberg–Saxton (GS) algorithm to 

design two phase profiles 𝑒#6! , 𝑒#6" as shown in Fig. S3 (c, d) such that FT(𝑒#6!/") = 𝜓3/2. Here 

we assume that Alice is using a metasurface to independently control the phase and hologram for 

LCP and RCP [6]. To account for fabrication imperfections, we also add random phase profiles 
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 to the metasurface with 𝜃9:;
(3) , 𝜃9:;

(2) following normal distribution with 0 mean and 

𝜋/2 standard deviation. After accounting for this imperfection, we denote the imperfect state as 

|𝛼#5⟩ and |𝛽#5⟩ with the spatial modes 𝜓3/2 replaced by 𝜓3/25 = FT<𝑒#6!/"𝑒#8$%&
(!/")

>.  

Next, we evaluate the crosstalk matrix 𝒞#% = hUV𝛾%U𝛾#5	WU
1j  where |𝛾#⟩ = |𝛼#⟩	 for 𝑖 ≤ 4  and 

|𝛾#⟩ = |𝛽#<=⟩	for 𝑖 > 4. This matrix captures all possible combinations of states prepared by Alice 

and their corresponding measurements by Bob. Here, Bob is projecting the spatial modes into two 

𝜓𝐿(a)

𝜓𝑅(b)

𝑒𝑖𝜑𝐿(c)

𝑒𝑖𝜑𝑅(d)

𝜓𝐿′(e)

𝜓𝑅′(f)

0

𝜋

2𝜋

1.5𝜋

0.5𝜋

Phase



perfect bases ⟨𝛼#|  and ⟨𝛽#| . While the exact implementation of projecting onto the ⟨𝛽#|  basis 

requires further development, falling outside the scope of the current work, we note that similar 

hybrid entanglement projections have been demonstrated in [51], where holograms were replaced 

by OAM modes, using q-plates and spatial light modulators for mode-selective detection. We also 

normalized each set of projections by Bob, which means the first four and last four elements for 

each row are normalized separately: 

 
From the results, we obtain a quantum bit error rate (QBER), 𝐸 = 1.50%, calculated as one minus 

the average of the diagonal elements in this crosstalk matrix. This error rate is below the error 

security threshold of 18% [54] (compared to 11% for two-dimensional BB84 QKD) which 

indicates the security of high-dimensional QKD using quantum holograms. Certainly, in an actual 

experiment (rather than numerical results here), E will be higher, but the increase of the security 

threshold due to the higher dimensional implementation helps the security of the protocol.  

Another measure is the mutual information between Alice and Bob, given by  

𝐼>? = log1(𝑑) + (1 − 𝐸) log1(1 − 𝐸) + 𝐸 log1 K
𝐸

𝑑 − 1L ,	 

where 𝑑 = 4 is the dimension of the basis. By substituting the numerical value of E, we obtain the 

mutual information as 1.86 bit (compared to maximally 1 bit for two-dimensional BB84 QKD). 

This result demonstrates that high-dimensional encoding using quantum holograms offers 

advantages over two-dimensional protocols [52]. We note that quantum hologram approach can 

be further extended to an even higher dimension than above results, e.g., through implementations 

using Jones matrix metasurfaces (more in-out polarization combinations) or metasurface lens-

array designs (more path degrees of freedom), with corresponding benefits in higher data capacity 

and security thresholds. This enhanced dimensionality leads to more robust QKD implementations, 

as higher-dimensional quantum hologram schemes can tolerate larger quantum bit error rates while 

maintaining security. These results establish the quantum hologram as a more flexible basis in 
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high-dimensional quantum key distribution, offering a practical path toward enhanced quantum 

communication protocols. 


